

STRONG PARTNERS. TOUGH TRUCKS.

Four-wheel Electric Counterbalanced Lift Trucks J2.2-3.5XN

2 200 – 3 500 kg

J2.2XN, J2.5XN, J3.0XN, J3.5XN Advance

	1.1	Manufacturer	HYS	TER	HYS	TER	HYSTER			
SOL	1.2	Model designation			2XN	J2.5X	N (717)	J2.5XI	N (861)	
RIST	1.3	Power: battery, diesel, LPG, electric mains			tery	ļ	ttery		tery	
E I	1.4	Operation: manual, pedestrian, stand, seat, order picker			eat		eat	Seat		
CHARACTERISTICS	1.5	Load capacity	Q (kg)		200		500	2 500		
CH/	1.6	Load centre	c (mm)		00		00	500		
	1.8	Load distance	x (mm)		04		04)4	
	1.9	Wheelbase	y (mm)	16	606	1	606	1 750		
[2.1	Unladen weight (max. battery)	kg	4.4	165	4	465	4 876		
WEIGHT	2.2	Axle loading, with load front/rear (max. battery)	kg	5 651	1 014	6 120	845	6 195	1 181	
WE	2.3	Axle loading, without load front/rear (max. battery)	kg	2 212	2 253	2 212	2 253	2 403	2 473	
			ÿ							
S	3.1	Tyres: L=Pneumatic, V=Cushion, SE=Pneumatic Shaped Solid		S	Ε	9	SE	S		
TYRES	3.2	Tyre size, front			10 - 12		10 - 12		0 - 12	
8 T	3.3	Tyre size, rear			7 - 8		7 - 8		7 - 8	
WHEELS &	3.5	Number of wheels, front/rear (X = driven)		2X	2	2X	2	2X	2	
WHE	3.6	Track width, front, standard/wide tread	b ₁₀ (mm)	938	1 054	938	1 054	938	1 054	
	3.7	Track width, rear	b ₁₁ (mm)	9:	92	9	92	9:	92	
	4.1	Mast tilt, α = forward/ β = back	degrees	5	5	5	5	5	5	
	4.2	Height of mast, lowered	h ₁ (mm)		192		192		92	
	4.3	Free lift ¶	h ₂ (mm)		00		00		00	
	4.4	Lift height ¶	h ₃ (mm)		350		350	33		
	4.5	Height of mast, extended +	h ₄ (mm)	3 9	960	3	960	3 9	960	
	4.7	Overhead guard height ◆	h ₆ (mm)	2 '	193	2	193	2 193		
	4.8	Seat height ▷	h ₇ (mm)	1 (007	1 007		1 (107	
	4.12	Towing coupling height	h ₁₀ (mm)	262 3 321		262 3 321		262 3 465		
NS	4.19	Overall length	I ₁ (mm)							
oisi	4.20	Length to face of forks	I ₂ (mm)	23	321	2	321	2 4	65	
DIMENSIONS	4.21	Overall width (standard/wide tread)	b ₁ /b ₂ (mm)	1 173	1 289	1 173	1 289	1 173	1 289	
	4.22	Fork dimensions	s/e/I (mm)		00 1 000		00 1 000	40 1		
	4.23	Fork carriage DIN 15173. Class A/B			Α		2A		A	
	4.24	Fork carriage width ■	b ₃ (mm))67	ļ	067	10		
	4.31	Ground clearance under mast, with load	m ₁ (mm)	1:	98		98 37	1:	8	
	4.32	Ground clearance, centre of wheelbase	m ₂ (mm)		598					
	4.33	Aisle width with pallets 1 000 long x 1 200 wide A Aisle width with pallets 800 wide x 1 200 long A	Ast (mm) Ast (mm)		751	3 598 3 751 1 931		3 736 3 891 2 073		
ŀ	4.35	Outer turning radius	W _a (mm)	19						
	4.36	Inner turning radius	b ₁₃ (mm)		73		73	189		
		Inter-terming reduce	= 13 (******)			110		100		
	5.1	Travel speed with/without load ❖	km/h	18,0	18,0	18,0	18,0	18,0	18,0	
	5.2	Lifting speed with/without load	m/sec	0,40	0,63	0,38	0,63	0,38	0,63	
ANCE	5.3	Lowering speed with/without load	m/sec	0,57	0,51	0,57	0,51	0,57	0,51	
5	5.5	Drawbar pull with/without load, 60 minute rating	N	5 468	5 773	5 591	5 726	5 591	5 726	
PERFORM	5.6	Max. drawbar pull with/without load, 5 minute rating	N	18 045	19 052	18 451	18 897	18 451	18 897	
PERF	5.7	Gradeability with/without load, 30 minute rating †	%	10	14	9	13	9	13	
	5.8	Maximum gradeability with/without load, 5 minute rating †	%	26 4,42	39 4,11	24 4,45	35 4,11	24 4,45	35 4,11	
	5.9 5.10	Acceleration time with/without load ❖ Service brake	Sec		aulic 4,11		4,11 raulic	4,45 Hydi		
	5.10	Service blake		Tiyui	aulic	Tiyu	raulic	Tiyu	aulic	
	6.1	Drive motor rating, S2, 60 min	kW	2x -	10,0	2x	10,0	2x -	10,0	
	6.2	Lifting motor, S3 15% rating	kW	16	6,0	1	6,0	16	5,0	
MOTOR	6.3	Battery DIN 43531/35/36 A, B, C, no		DIN 4	3536 A	DIN 4	3536 A	DIN 4	3536 A	
MO.	6.4	Battery voltage/capacity at 5 hr rate	V/Ah	80	560	80	560	80	700	
	6.5	Battery weight (min./max.)	kg	1 480	1 635	1 480	1 635	1 770	1 956	
	6.6	Power consumption in accordance with VDI cycle <	kWh/h	6,	68	7	00	7,	89	
	0.4	Drive control		A O -1-	octronic	A.O1	otronic	A O -1-	otronio	
	8.1	Drive control	han		ectronic		ectronic		ctronic	
8	8.2	Operating pressure for attachments Oil flow for attachments	bar //min		55 -40		55		55	
デ		Oil flow for attachments	I/min	20-40		20-40		20-40		
OTHER	_	Average noise level at operator's ear 4	dR(A)		57		37	G	7	
0THE	8.4 8.5	Average noise level at operator's ear ≺ Towing coupling type	dB(A)	6	in		37 Pin		7 in	

Specification data is based on VDI 2198

Equipment and weight:

Weights (line 2.1) are based on the following specifications:

Complete truck with 3 390 mm (J2.5-2.5XN) or 3 200 mm (J3.0-3.5XN) 2-stage limited free lift mast, 1 067 mm hook type carriage with load backrest, 1 000 mm forks, overhead guard and pneumatic shaped solid drive and steer tyres.

HYS	TER	HY	STER		
J3.0			.5XN	1.1	C
Batt			attery	1.3	HAF
Se	-		Seat	1.4	ACT
3 0	00	3	1.5	ERIS	
50	0	Ę	1.6	CHARACTERISTICS	
41	6	4	116	1.8	S
1.7	50	1	750	1.9	
4 9	10	E	225	0.4	
7 006	904	7 714	1 011	2.1	WEIC
2 443	2 467	2 391	2 834	2.3	/EIGHT
			•		
SI			SE	3.1	<u>×</u>
23 x 1			10 - 12	3.2	WHEELS & TYRES
2X	7 - 8	2X	x 7 - 8	3.3	s &
938	1 054	938	1 054	3.5 3.6	ΤYF
99			992	3.7	ÆS.
5	5	5	5	4.1	
2.1			192	4.2	
3 1			100 155	4.3 4.4	
38			865	4.4	
2 1			193	4.7	
10			007	4.8	
26	2	2	262	4.12	
3 4	65	3	4.19		
2 4	65	2	555	4.20	MEN
1 173	1 289	1 173	1 289	4.21	MENSIONS
45 10			100 1 000	4.22	S
10		_	3A 067	4.23 4.24	
I 9			98		
98	3		98 137	4.31	
98 13 3 7	3 7		98 137 813		
13	3 7 47	3	137	4.31 4.32	
13 3 7	3 7 47 03	3 3	137 813	4.31 4.32 4.33	
13 3 7 3 9	3 7 47 03 73	3 3 2	137 813 969	4.31 4.32 4.33 4.34	
13 3 7 3 9 2 0	3 7 47 03 73 9	3 3 2	137 813 969 139 189	4.31 4.32 4.33 4.34 4.35 4.36	
13 3 7 3 9 2 0	3 7 47 03 73	3 3 2	137 813 969 139	4.31 4.32 4.33 4.34 4.35	
13 3 7 3 9 2 0 18	3 7 447 03 73 9	3 3 2 2	137 813 969 139 189	4.31 4.32 4.33 4.34 4.35 4.36	Pl
13 37 39 20 18 17,0 0,33 0,56 5 441	3 7 47 03 73 9 18,0 0,59 0,46 5 588	3 3 3 2 2 16,0 0,31	137 813 969 139 189 18,0 0,59	4.31 4.32 4.33 4.34 4.35 4.36	PERFC
13 37. 39 20 18 17,0 0,33 0,56 5 441 17 956	3 7 47 03 73 9 18,0 0,59 0,46 5 588 18 441	16,0 0,31 0,58 5 478 18 076	137 813 969 139 189 18,0 0,59 0,46 5 720 18 875	4.31 4.32 4.33 4.34 4.35 4.36 5.1 5.2 5.3 5.5 5.6	
13 37 39 20 18 17,0 0,33 0,56 5 441 17 956 8	18,0 0,59 0,46 5 588 18 441	16,0 0,31 0,58 5 478 18 076	137 813 969 139 189 18,0 0,59 0,46 5 720 18 875 12	4.31 4.32 4.33 4.34 4.35 4.36 5.1 5.2 5.3 5.5 5.6 5.7	PERFORMANCI
13 37 39 20 18 17,0 0,33 0,56 5 441 17 956 8	3 7 47 03 73 9 18,0 0,59 0,46 5 588 18 441 12 34	16,0 0,31 0,58 5 478 18 076 7	137 813 969 139 189 18,0 0,59 0,46 5,720 18,875 12 32	4.31 4.32 4.33 4.34 4.35 4.36 5.1 5.2 5.3 5.5 5.6 5.7 5.8	
13 37. 39 20 18 17,0 0,33 0,56 5 441 17 956 8 22 4,56	3 7 47 03 73 9 18,0 0,59 0,46 5 588 18 441 12 34 4,18	16,0 0,31 0,58 5 478 18 076 7 20 4,60	137 813 969 139 189 189 18,0 0,59 0,46 5720 18,875 12 32 4,23	4.31 4.32 4.33 4.34 4.35 4.36 5.1 5.2 5.3 5.5 5.6 5.7 5.8	
13 37 39 20 18 17,0 0,33 0,56 5 441 17 956 8 22 4,56 Hydra	18,0 0,59 0,46 5,588 18,441 12 34 4,18	16,0 0,31 0,58 5 478 18 076 7 20 4,60	137 813 969 139 189 18,0 0,59 0,46 5,720 18,875 12 32	4.31 4.32 4.33 4.34 4.35 4.36 5.1 5.2 5.3 5.5 5.6 5.7 5.8	
13 37 39 20 18 17,0 0,33 0,56 5 441 17 956 8 22 4,56 Hydra	18,0 0,59 0,46 5 588 18 441 12 34 4,18 aulic	16,0 0,31 0,58 5 478 18 076 7 20 4,60 Hyc	137 813 969 139 189 189 18,0 0,59 0,46 5 720 18 875 12 32 4 ,23 draulic	4.31 4.32 4.33 4.34 4.35 4.36 5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10	
13 37 39 20 18 17,0 0,33 0,56 5 441 17 956 8 22 4,56 Hydra	18,0 0,59 0,46 5 588 18 441 12 34 4,18 aulic	16,0 0,31 0,58 5 478 18 076 7 20 4,60 Hyc	137 813 969 139 189 189 18,0 0,59 0,46 5 720 18 875 12 32 4 ,23 14 ,23 10,0 6,0	4.31 4.32 4.33 4.34 4.35 4.36 5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10	
13 37 39 20 18 17,0 0,33 0,56 5 441 17 956 8 22 4,56 Hydra	3 7 47 03 73 9 18,0 0,59 0,46 5 588 18 441 12 34 4,18 aulic 0,0 0,0	16,0 0,31 0,58 5 478 18 076 7 20 4,60 Hyo	137 813 969 139 189 18,0 0,59 0,46 5 720 18 875 12 32 4 ,23 1 raulic	4.31 4.32 4.33 4.34 4.35 4.36 5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10	
13 37 39 20 18 17,0 0,33 0,56 5 441 17 956 8 22 4,56 Hydra	3 7 47 03 73 9 18,0 0,59 0,46 5 588 18 441 12 34 4,18 aulic 0,0 0,0 536 A 700	16,0 0,31 0,58 5 478 18 076 7 20 4,60 Hyo	137 813 969 139 189 18,0 0,59 0,46 5720 18 875 12 32 4,23 17 audic	4.31 4.32 4.33 4.34 4.35 4.36 5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10	
13 37 39 20 18 17,0 0,33 0,56 5 441 17 956 8 22 4,56 Hydra 2x 1 16 DIN 43 80 1 770	3 7 47 03 73 9 18,0 0,59 0,46 5 588 18 441 12 34 4,18 aulic 0,0 0,0 1956	16,0 0,31 0,58 5 478 18 076 7 20 4,60 Hyo	137 813 969 139 189 18,0 0,59 0,46 5720 18 875 12 32 4,23 17 aulic 10,0 6,0 13536 A 700 1 956	4.31 4.32 4.33 4.34 4.35 4.36 5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10	
13 37 39 20 18 17,0 0,33 0,56 5441 17,956 8 22 4,56 Hydra 2x 1 16 DIN 43 80 1,770 8,6	3 7 47 03 73 9 18,0 0,59 0,46 5 588 18 441 12 34 4,18 aulic 0,0 1956 66	16,0 0,31 0,58 5 478 18 076 7 20 4,60 Hyo	137 813 969 139 189 18,0 0,59 0,46 5720 18 875 12 32 4,23 17 audic	4.31 4.32 4.33 4.34 4.35 4.36 5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10	
13 37 39 20 18 17,0 0,33 0,56 5441 17,956 8 22 4,56 Hydra 2x 1 16 DIN 43 80 1,770 8,6	3 7 47 03 73 9 18,0 0,59 0,46 5 588 18 441 12 34 4,18 aulic 0,0 1956 66	16,0 0,31 0,58 5 478 18 076 7 20 4,60 Hyd 2x 1 DIN 4 80 1 770	137 813 969 139 189 189 18,0 0,59 0,46 5720 18,875 12 32 4,23 draulic 10,0 6,0 13536 A 700 1 956 0,03	4.31 4.32 4.33 4.34 4.35 5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10 6.1 6.2 6.3 6.4 6.5 6.6	
13 37 39 20 18 17,0 0,33 0,56 5441 17,956 8 22 4,56 Hydra 2x 1 16 DIN 43 80 1,770 8,6	3	3 3 3 3 3 2 2 16,0 0,31 0,58 5 478 18 076 7 20 4,60 Hyc 2x 1 DIN 4 80 1 770 11	137 813 969 139 189 189 18,0 0,59 0,46 5720 18,875 12 32 4,23 draulic 10,0 6,0 13536 A 700 1 956 0,03	4.31 4.32 4.33 4.34 4.35 5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10 6.1 6.2 6.3 6.4 6.5 6.6	DRMANCE MOTOR C
13 37 39 20 18 17,0 0,33 0,56 5 441 17 956 8 22 4,56 Hydra DIN 43 80 1 770 8,6	3 7 47 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	16,0 0,31 0,58 5 478 18 076 7 20 4,60 Hyc 2x 1 DIN 4 80 1 770	137 813 969 139 189 189 18,0 0,59 0,46 5720 18 875 12 32 4,23 draulic 10,0 6,0 13536 A 700 1 956 0,03 ectronic 155 0-40	4.31 4.32 4.33 4.34 4.35 4.36 5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10 6.1 6.2 6.3 6.4 6.5 6.6	
13 37 39 20 18 17,0 0,33 0,56 5441 17,956 8 22 4,56 Hydra 2x 1 16 DIN 43 80 1,770 8,6	18,0 03,73 9 18,0 0,59 0,46 5,588 18,441 12 34 4,18 aulic 0,0 1,956 66 ctronic 5 40	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	137 813 969 139 189 189 18,0 0,59 0,46 5720 18,875 12 32 4,23 draulic 10,0 6,0 13536 A 700 1 956 0,03	4.31 4.32 4.33 4.34 4.35 5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10 6.1 6.2 6.3 6.4 6.5 6.6	DRMANCE MOTOR C

J2.2XN, J2.5XN, J3.0XN, J3.5XN Advance+

	1.1	Manufacturer		HYS	TER	HYS	STER	HYSTER		
SOI	1.2	Model designation	J2.:	2XN	J2.5X	N (717)	J2.5XN (861)			
ST	1.3	Power: battery, diesel, LPG, electric mains		Bat	ttery	Ва	ttery	Bat	tery	
TERI	1.4	Operation: manual, pedestrian, stand, seat, order picker		Seat		Seat		Seat		
CHARACTERIST	1.5	Load capacity	Q (kg)	2 200		2	500	2 500		
HAI	1.6	Load centre	c (mm)	5	00	5	600	500		
	1.8	Load distance	x (mm)	4	04	4	-04	4	04	
	1.9	Wheelbase	y (mm)	16	306	1	606	17	750	
					405	4	105	4 876		
표	2.1	Unladen weight (max. battery)	kg		165 1 014		465 845			
WEIGHT	2.2	Axle loading, with load front/rear (max. battery)	kg	5 651 2 212	2 253	6 120 2 212	2 253	6 195 2 403	1 181 2 473	
	2.3	Axle loading, without load front/rear (max. battery)	kg	2212	2 233	2212	2 233	2 403	2413	
(0	3.1	Tyres: L=Pneumatic, V=Cushion, SE=Pneumatic Shaped Solid		S	SE .		SE	S	E	
/RE	3.2	Tyre size, front		23 x 1	10 - 12	23 x	10 - 12	23 x 1	0 - 12	
WHEELS & TYRES	3.3	Tyre size, rear		18 x	7 - 8	18 >	(7-8	18 x	7 - 8	
STE	3.5	Number of wheels, front/rear (X = driven)		2X	2	2X	2	2X	2	
里	3.6	Track width, front, standard/wide tread	b ₁₀ (mm)	938	1 054	938	1 054	938	1 054	
>	3.7	Track width, rear	b ₁₁ (mm)	9:	92	g	92	9	92	
	4.1	Mart tilt a = forward/B = hack	dograda	5	5	5	5	5	5	
	4.1	Mast tilt, α = forward/ β = back Height of mast, lowered	degrees h ₁ (mm)		192		192		192	
	4.3	Free lift ¶	h ₂ (mm)		00		00			
	4.4	Lift height ¶		350		350	100 3 350			
	4.5	Height of mast, extended +	h ₃ (mm) h ₄ (mm)		960	3 960		3 960		
	4.7	Overhead guard height ◆	h ₆ (mm)		193	2 193		2 193		
	4.8	Seat height ⊳	h ₇ (mm)	1 007		1 007		1 007		
	4.12	Towing coupling height	h ₁₀ (mm)	262		262		2	62	
NS	4.19	Overall length	I ₁ (mm)	33	321	3	321	3 4	165	
DIMENSIONS	4.20	Length to face of forks	I ₂ (mm) 2 321		2 321		2 465			
MEN	4.21	Overall width (standard/wide tread)	b ₁ /b ₂ (mm)	1 173	1 289	1 173	1 289	1 173	1 289	
	4.22	Fork dimensions	s/e/I (mm)		00 1 000		00 1 000		00 1 000	
	4.23	Fork carriage DIN 15173. Class A/B			PA		2A	ļ	A	
	4.24	Fork carriage width ■	b ₃ (mm)		067		067	10		
	4.31	Ground clearance under mast, with load	m ₁ (mm)		98		98		8	
	4.32 4.33	Ground clearance, centre of wheelbase Aisle width with pallets 1 000 long x 1 200 wide A	m ₂ (mm)		37 598		37 598		37 736	
	4.34	Aisle width with pallets 800 wide x 1 200 long A	Ast (mm) Ast (mm)		751		751	38		
	4.35	Outer turning radius	W _a (mm)		931		931)73	
	4.36	Inner turning radius	b ₁₃ (mm)		73	173		189		
		3	10 ()							
	5.1	Travel speed with/without load ★	km/h	21,0	21,0	21,0	21,0	21,0	21,0	
	5.2	Lifting speed with/without load	m/sec	0,52	0,72	0,49	0,72	0,49	0,72	
CE	5.3	Lowering speed with/without load	m/sec	0,57	0,51	0,57	0,51	0,57	0,51	
MAN	5.5	Drawbar pull with/without load, 60 minute rating	N	6 015	6 235	6 037	6 185	6 037	6 185	
PERFORM/	5.6	Max. drawbar pull with/without load, 5 minute rating	N 0/	19 849 11	20 576 16	19 927 10	20 409 14	19 927	20 409 14	
PER	5.7 5.8	Gradeability with/without load, 30 minute rating † Maximum gradeability with/without load, 5 minute rating †	%	28	42	26	38	10 26	38	
	5.8	Acceleration time with/without load *	% Sec	4,04	3,71	4,04	3,71	4,04	3,71	
	5.10	Service brake	360		raulic		raulic		aulic	
	0.10	OCIVICE DIANC		Tiyan	idalio	riyo	iduio	Tiya	adilo	
	6.1	Drive motor rating, S2, 60 min	kW	2x -	10,0	2x	10,0	2x	10,0	
-	6.2	Lifting motor, S3 15% rating	kW		4,0		4,0		1,0	
MOTOR	6.3	Battery DIN 43531/35/36 A, B, C, no			3536 A		3536 A		3536 A	
MO	6.4	Battery voltage/capacity at 5 hr rate	V/Ah	80	560	80	560	80	700	
	6.5	Battery weight (min./max.)	kg	1 480	1 635	1 480	1 635	1 770	1 956	
	6.6	Power consumption in accordance with VDI cycle *	kWh/h	7,	51	7	,87	8,	86	
	8.1	Drive control		AC ele	ectronic	AC el	ectronic	AC ele	ectronic	
~	8.2	Operating pressure for attachments ▼	bar		55		55	ļ	55	
OTHER	8.3	Oil flow for attachments	I/min		-40)-40		- 40	
10	8.4	Average noise level at operator's ear ≺	dB(A)		38		68		8	
	8.5	Towing coupling type		Р	in	F	Pin	Р	in	
					_		_		_	

Specification data is based on VDI 2198

Equipment and weight:

Weights (line 2.1) are based on the following specifications:

Complete truck with 3 390 mm (J2.5-2.5XN) or 3 200 mm (J3.0-3.5XN) 2-stage limited free lift mast, 1 067 mm hook type carriage with load backrest, 1 000 mm forks, overhead guard and pneumatic shaped solid drive and steer tyres.

	TER	Н	STER	1.1		
J3.0)XN	19	3.5XN	1.1	C	
Bat			attery	1.3	HAR	
	eat		Seat	1.4	ACT	
3 (3	1.5	CHARACTERISTICS		
	00		1.6	STIC		
4			500 416	1.8	Š	
	750		1 750	1.9		
4.9	910	5	5 225	2.1	×	
7 006	904	7 714	1 011	2.2	/EIGHT	
2 443	2 467	2 391	2 834	2.3	≐	
S			SE	3.1		
	0 - 12	23 y	(10 - 12	3.2	¥	
	7 - 8		x7-8	3.3	VHEELS & TYRES	
2X	2	2X	2	3.5	80	
938	1 054	938	1 054	3.6	Ŧ	
99			992	3.7	ES	
5	5	5	5	4.1		
2 1			2 192	4.2		
	00		100	4.3		
3 1			3 155	4.4		
3 8			3 865	4.5		
2 1			2 193	4.7		
	007		4.8			
	62		4.12			
3 4			3 555	4.19	DIM	
4.470			2 555	4.20	ENS	
1 173 45 10	1 289 00 1 000	1 173 45	1 289	4.21 4.22	DIMENSIONS	
45 10		40	3A	4.23	S	
	067	1	067	4.24		
	8		4.31			
	37		98 137	4.32		
3 7			3 813	4.33		
3.9	903		3 969	4.34		
2 (_	_				
)73	2	189			
)73 39			4.35 4.36		
18	39		189	4.36		
19,5	21,0	18,0	21,0	4.36 5.1		
19,5 0,42	21,0 0,63	18,0 0,37	21,0 0,63	5.1 5.2		
19,5 0,42 0,56	21,0 0,63 0,46	18,0 0,37 0,58	21,0 0,63 0,46	5.1 5.2 5.3	PER	
19,5 0,42 0,56 5 877	21,0 0,63 0,46 6 035	18,0 0,37 0,58 5 918	21,0 0,63 0,46 6 177	5.1 5.2 5.3 5.5	PERFOR	
19,5 0,42 0,56 5 877 19 393	21,0 0,63 0,46 6 035 19 916	18,0 0,37 0,58 5 918 19 522	21,0 0,63 0,46 6 177 20 385	5.1 5.2 5.3 5.5 5.6	PERFORMAN	
19,5 0,42 0,56 5 877 19 393 9	21,0 0,63 0,46 6 035 19 916 13	18,0 0,37 0,58 5 918 19 522 8	21,0 0,63 0,46 6 177 20 385	5.1 5.2 5.3 5.5 5.6 5.7		
19,5 0,42 0,56 5 877 19 393	21,0 0,63 0,46 6 035 19 916	18,0 0,37 0,58 5 918 19 522	21,0 0,63 0,46 6 177 20 385	5.1 5.2 5.3 5.5 5.6		
19,5 0,42 0,56 5 877 19 393 9 24 4,14	21,0 0,63 0,46 6 035 19 916 13 37	18,0 0,37 0,58 5 918 19 522 8 22 4,19	21,0 0,63 0,46 6 177 20 385 13 35	5.1 5.2 5.3 5.5 5.6 5.7 5.8		
19,5 0,42 0,56 5 877 19 393 9 24 4,14	21,0 0,63 0,46 6 035 19 916 13 37 3,78	18,0 0,37 0,58 5 918 19 522 8 22 4,19 Hy	21,0 0,63 0,46 6 177 20 385 13 35 3,83 draulic	5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9		
19,5 0,42 0,56 5 877 19 393 9 24 4,14 Hydr	21,0 0,63 0,46 6 035 19 916 13 37 3,78 raulic	18,0 0,37 0,58 5 918 19 522 8 22 4,19 Hy	21,0 0,63 0,46 6 177 20 385 13 35 3,83 draulic	5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10		
19,5 0,42 0,56 5 877 19 393 9 24 4,14 Hydr	21,0 0,63 0,46 6 035 19 916 13 37 3,78 aulic	18,0 0,37 0,58 5 918 19 522 8 22 4,19 Hy	21,0 0,63 0,46 6 177 20 385 13 35 3,83 draulic × 10,0 24,0	5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10		
19,5 0,42 0,56 5 877 19 393 9 24 4,14 Hydr	21,0 0,63 0,46 6 035 19 916 13 37 3,78 aulic	18,0 0,37 0,58 5 918 19 522 8 22 4,19 Hy	21,0 0,63 0,46 6 177 20 385 13 35 3,83 draulic	4.36 5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10 6.1 6.2 6.3		
19,5 0,42 0,56 5 877 19 393 9 24 4,14 Hydr 2x 24 DIN 43	21,0 0,63 0,46 6 035 19 916 13 37 3,78 aulic	18,0 0,37 0,58 5 918 19 522 8 22 4,19 Hy	21,0 0,63 0,46 6 177 20 385 13 35 3,83 draulic × 10,0 24,0 43536 A	4.36 5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10 6.1 6.2 6.3 6.4		
19,5 0,42 0,56 5 877 19 393 9 24 4,14 Hydr 2x 2 DIN 4:	21,0 0,63 0,46 6 035 19 916 13 37 3,78 aulic	18,0 0,37 0,58 5 918 19 522 8 22 4,19 Hy	21,0 0,63 0,46 6 177 20 385 13 35 3,83 draulic × 10,0 24,0 43536 A 700 1 956	4.36 5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10 6.1 6.2 6.3 6.4 6.5		
19,5 0,42 0,56 5 877 19 393 9 24 4,14 Hydr 2x 24 DIN 43	21,0 0,63 0,46 6 035 19 916 13 37 3,78 aulic	18,0 0,37 0,58 5 918 19 522 8 22 4,19 Hy	21,0 0,63 0,46 6 177 20 385 13 35 3,83 draulic × 10,0 24,0 43536 A	4.36 5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10 6.1 6.2 6.3 6.4		
19,5 0,42 0,56 5 877 19 393 9 24 4,14 Hydr 2x 2 DIN 4:	21,0 0,63 0,46 6 035 19 916 13 37 3,78 aulic	18,0 0,37 0,58 5 918 19 522 8 22 4,19 Hy	21,0 0,63 0,46 6 177 20 385 13 35 3,83 draulic × 10,0 24,0 43536 A 700 1 956	4.36 5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10 6.1 6.2 6.3 6.4 6.5		
19,5 0,42 0,56 5 877 19 393 9 24 4,14 Hydr 2x ' 2d DIN 4: 80 1 770 9,	21,0 0,63 0,46 6 035 19 916 13 37 3,78 aulic	18,0 0,37 0,58 5 918 19 522 8 22 4,19 Hy DIN 80 1 770	189 21,0 0,63 0,46 6 177 20 385 13 35 3,83 draulic x 10,0 24,0 43536 A 700 1 956	4.36 5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10 6.1 6.2 6.3 6.4 6.5 6.6	ORMANCE MOTOR C	
19,5 0,42 0,56 5 877 19 393 9 24 4,14 Hydr 2x 2 DIN 4: 80 1 770 9,	21,0 0,63 0,46 6 035 19 916 13 37 3,78 aulic 10,0 1,0 10,0 1	18,0 0,37 0,58 5 918 19 522 8 22 4,19 Hy DIN 80 1 770	189 21,0 0,63 0,46 6 177 20 385 13 35 3,83 draulic × 10,0 24,0 43536 A 700 1 956 11,28	5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10 6.1 6.2 6.3 6.4 6.5 6.6	ORMANCE MOTOR C	
19,5 0,42 0,56 5 877 19 393 9 24 4,14 Hydr 22x DIN 4: 80 1 770 9, AC ele 1! 20-6	21,0 0,63 0,46 6 035 19 916 13 37 3,78 aulic 10,0 1,0 3536 A 700 1 956 74	18,0 0,37 0,58 5 918 19 522 8 22 4,19 Hy DIN 80 1 770	189 21,0 0,63 0,46 6 177 20 385 13 35 3,83 draulic x 10,0 24,0 43536 A 700 1 956 11,28	5.1 5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10 6.1 6.2 6.3 6.4 6.5 6.6		

Mast and Capacity Information

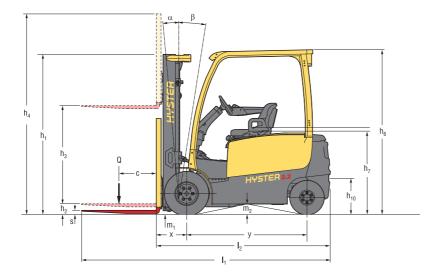
Values shown are for standard equipment. When using non-standard equipment these values may change. Please contact your Hyster dealer for information.

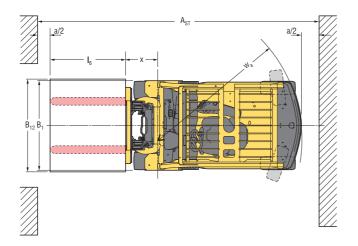
Vista Masts J2.2 - 2.5XN

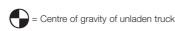
	Maximum fork height mm (h ₃ +s)	Back tilt	Overall lowered height mm	Overall extended height mm	Free lift (top of forks) mm (h ₂ +s)
Vista 2-Stage limited free lift	3 390 3 790 4 330 4 830	5° 5° 5°	2 195 2 395 2 745 2 995	3 956 \diamondsuit 4 356 \diamondsuit 4 896 \diamondsuit 5 396 \diamondsuit	140 140 140 140
Vista 2-Stage full free lift	3 400 3 800 4 420	5° 5° 5°	2 195 2 395 2 745	3 966 \diamondsuit 4 366 \diamondsuit 4 986 \diamondsuit	1 625 ¤ 1 825 ¤ 2 175 ¤
Vista 3-Stage full free lift	4 950 5 550 6 000	5° 5° 5°	2 145 2 395 2 595	5 496 🗆 6 096 🗅 6 546 🗅	1 595 O 1 845 O 2 045 O

Vista Masts J3.0 - 3.5XN

	Maximum fork height mm (h ₃ +s)	Back tilt	Overall lowered height mm	Overall extended height mm	Free lift (top of forks) mm (h ₂ +s)
Vista 2-Stage limited free lift	3 200 3 600 4 100 4 600	5° 5° 5°	2 195 2 395 2 745 2 990	3 861 ▲ 4 261 ▲ 4 761 ▲ 5 261 ▲	145 145 145 145
Vista 2-Stage full free lift	3 205 3 905 4 405	5° 5° 5°	2 195 2 595 2 845	3 862 ▲ 4 562 ▲ 5 062 ▲	1 535 1 935 1 2 185 1
Vista 3-Stage full free lift	4 610 4 910 5 210 5 810	5° 5° 5° 5°	2 145 2 295 2 395 2 645	5 252 • 5 552 • 5 852 • 6 452 •	1 500 D 1 650 D 1 750 D 2 000 D

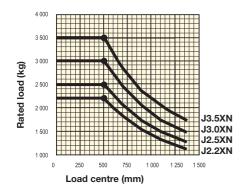

J2.2-3.5XN - Capacity chart in kg @ 500 mm load centre


	Pneumatic Shaped Solid Tyres											
Maximum	Without sideshift			With integral sideshift			Maximum	Without sideshift		With integral sideshift		
fork height mm (h ₃ +s)	J2.2XN (717)	J2.5XN (717)	J2.5XN (861)	J2.2XN (717)	J2.5XN (717)	J2.5XN (861)	fork height mm (h ₃ +s)	J3.0XN (861)	J3.5XN (861)	J3.0XN (861)	J3.5XN (861)	
3 390 3 790 4 330 4 830	2 200 2 200 2 200 2 200	2 500 2 500 2 500 2 480	2 500 2 500 2 500 2 500	2 200 2 200 2 200 2 190	2 490 2 490 2 470 2 440	2 500 2 500 2 500 2 500	3 200 3 600 4 100 4 600	3 000 3 000 3 000 2 920	3 500 3 500 3 500 3 410	2 960 2 950 2 940 2 850	3 440 3 430 3 420 3 330	
≝ 3 400	2 200 2 200 2 200	2 500 2 500 2 500	2 500 2 500 2 500	2 200 2 200 2 200	2 500 2 490 2 480	2 500 2 500 2 500	3 205 3 905 4 405	3 000 3 000 2 960	3 500 3 500 3 450	2 960 2 940 2 900	3 440 3 420 3 370	
4 950 5 550 6 000	2 200 2 110 2 020	2 440 2 310 2 210	2 500 2 410 2 310	2 180 2 070 1 980	2 400 2 250 2 150	2 500 2 380 2 290	4 610 4 910 5 210 5 810	2 970 2 900 2 840 2 690	3 460 3 400 3 320 3 170	2 900 2 830 2 760 2 600	3 370 3 300 3 220 3 060	


J2.2-3.5XN - Capacity chart in kg @ 600 mm load centre

	Pneumatic Shaped Solid Tyres											
	Maximum fork height	Without SideSillit			With integral sideshift			Maximum	Without sideshift		With integral sideshift	
	mm (h ₃ +s)	J2.2XN (717)	J2.5XN (717)	J2.5XN (861)	J2.2XN (717)	J2.5XN (717)	J2.5XN (861)	fork height mm (h ₃ +s)	J3.0XN (861)	J3.5XN (861)	J3.0XN (861)	J3.5XN (861)
Vista 2-Stage limited free lift	3 390 3 790 4 330 4 830	2 000 2 000 2 000 2 000	2 270 2 270 2 270 2 250	2 270 2 270 2 270 2 270 2 270	2 000 2 000 1 990 1 980	2 250 2 250 2 240 2 210	2 270 2 270 2 270 2 270	3 200 3 600 4 100 4 600	2 720 2 720 2 720 2 650	3 130 3 130 3 130 3 090	2 680 2 670 2 660 2 580	3 110 3 100 3 090 3 010
Vista 2-Stage full free lift	3 400 3 800 4 420	2 000 2 000 2 000	2 270 2 270 2 270	2 270 2 270 2 270	2 000 2 000 1 990	2 260 2 250 2 240	2 270 2 270 2 270	3 205 3 905 4 405	2 720 2 720 2 680	3 130 3 130 3 130	2 680 2 660 2 620	3 110 3 090 3 050
Vista 3-Stage full free lift	4 950 5 550 6 000	2 000 1 920 1 830	2 210 2 100 2 000	2 270 2 190 2 100	1 970 1 870 1 790	2 170 2 030 1 940	2 250 2 150 2 070	4 610 4 910 5 210 5 810	2 690 2 630 2 570 2 440	3 130 3 080 3 010 2 870	2 620 2 560 2 500 2 350	3 050 2 980 2 920 2 2 760 3

Truck dimensions



 $A_{st} = W_a + R + a$ (see lines 4.33 and 4.34)

$$R = \sqrt{(I_6 + x)^2 + \left(\frac{b_{12} - b_{13}}{2}\right)^2}$$

Rated capacities

Load centre

Distance from front of forks to centre of gravity of load.

Rated load

Based on 3-Stage full free lift vertical masts up to 4 420 mm top of forks.

NOTE:

Specifications are affected by the condition of the vehicle and how it is equipped, as well as the nature and condition of the operating area. If these specifications are critical, the proposed application should be discussed with your dealer.

- ¶ Bottom of forks
- ★ Without load backrest
- Full suspension seat (FLM80) specified. Compressed condition, add 40 mm for nominal position.
 Add 104 mm for battery side removal option
- Add 28 mm with load backrest
- h₆ subject to +/- 5 mm tolerance. Add 104 mm for battery side removal option
- A Stacking aisle width (lines 4.33 & 4.34) is based on the V.D.I. standard calculation as shown on illustration. The British Industrial Truck Association recommends the addition of 100 mm to the total clearance (dimension a) for extra operating margin at the rear of the truck.
- † Gradeability figures (lines 5.7 & 5.8) are provided for comparison of tractive performance, but are not intended to endorse the operation of the vehicle on the stated inclines. Follow instructions in the operating manual regarding operation on inclines.
- Variable
- Advance configuration, with eLo performance setting
- Advance+ configuration with HiP performance setting
- Lpaz, measured according to the test cycles and based on the weighting values contained in EN12053

Tables key:

- Add 666 mm with load backrest extension
- Deduct 666 mm with load backrest extension
- ☐ Add 684 mm with load backrest extension
- O Deduct 684 mm with load backrest extension
- ▲ Add 583 mm with load backrest extension
- Deduct 583 mm with load backrest extension
- Add 601 mm with load backrest extension
- Deduct 601 mm with load backrest extension
- Wide tread required. Standard tread possible but with reduced capacity. Contact your lift truck dealer

Notice

Care must be exercised when handling elevated loads. When the carriage and/or load is elevated, truck stability is reduced. It is important that mast tilt in either direction be kept to a minimum when loads are elevated. Operators must be trained and adhere to the instructions contained in the Operating Manual.

Hyster products are subject to change without notice. Lift trucks illustrated may feature optional equipment.

This truck conforms to the current EU requirements.

Product Features

The Hyster J2.2-3.5XN series is available in 2 configurations - Advance & Advance+.

With enhanced performance characteristics, the Advance+ configuration has been designed to operate in intensive, high productivity applications with long runs and high lifts as an effective alternative to an engine-powered truck.

For example, in comparison to the Advance configuration, top speed (laden) has been increased to up to 21 km/h with faster acceleration and lifting speeds have been increased by 27%.

Dependability

- Robust mast design provides excellent visibility and reliable, high performance lifting.
- Strong chassis construction and reliable, long-lasting components deliver excellent durability and stability, increasing driver confidence and enhancing productivity.
- AC motor technology on traction and hoist, with built in thermal management system, allows the truck to work reliably over long runs and in demanding work cycles, reducing downtime significantly.
- The electrical system features a CANbus communications network and Hall Effect sensors for increased reliability.

Productivity

- Dual 10 kW AC front wheel traction motors deliver smooth acceleration, fast travel and rapid direction changes. This is combined with regenerative braking and a powerful hoist motor to deliver efficient load handling in the toughest of applications.
- Designed to offer excellent manoeuvrability in working aisles, speeding up throughput, the truck features a slim counterweight, Zero Turn Radius (ZTR) steer axle and dual drive motors.
- The maintenance-free mechanical Hyster Stability Mechanism (HSM) reduces truck lean when travelling over obstacles, increasing driver confidence and productivity.
- Extended battery shift life and easy side battery removal systems offer increased uptime with a fast, simple recharging process to keep trucks on the move.

Ergonomics

- The ergonomically designed operator compartment provides a comfortable and highly productive environment for the driver. The truck offers industry leading floor space and easy on/off access is enhanced thanks to the low intermediate non-slip step (height = 475 mm).
- Low noise and whole body vibration combined with a new full suspension seat with 80 mm suspension travel and a range of adjustments ensures the operator remains comfortable over long shifts.
- The fully adjustable tilt steering column with telescopic adjustment, memory tilt and synchronised steering options allows the operator to get on and off the truck quickly and easily throughout the shift, ensuring maximum comfort and increased productivity.
- The new mini-lever module armrest with built in hydraulic controls, integrated directional control, emergency off switch and horn offers the ultimate in comfort and control. Alternatively, seat-side manual levers also provide handling ease.
- A 'Heads-up' display keeps the driver's field of vision clear but provides him with 'at a glance' information on truck operating conditions or performance settings.
- A choice of weather protection options promotes a comfortable working environment, whatever the conditions.

Low Cost of Ownership

- Customisable performance settings allow energy efficiency to be ideally balanced with productivity delivering high throughput at lower operating cost.
- The Vehicle System Manager (VSM) allows adjustment of truck performance parameters and monitors key functions, leading to application matched performance and minimum downtime.
- Durable, quality components, including virtually maintenance free oil immersed brakes and brushless AC motors offer long term reliability and lower maintenance costs.
- In-built thermal protection on traction motors and advanced cooling system protect truck components, leading to reduced maintenance costs.
- Fast delivery of diagnostic information allows precise troubleshooting, easy maintenance planning and lower costs.

Serviceability

- Standard 1 000 hour service interval.
- Access to diagnostic information via the display or plug-in point on the steering column allows service technicians to monitor truck operations and plan maintenance requirements.
- Easily removable two-piece floor plate provides easy access to power contactor, traction controller fuses and relays.
- Motor, pump, controller and oil tank are located in the counterweight and are easily accessible, requiring only 2 thumb screws to be removed.
- Automatic park brake system can be released manually by activating lever arrangement underneath floor plates, reducing downtime.
- LED work lights are designed to last the lifetime of the truck.

Strong Partners, Tough Trucks, for Demanding Operations Everywhere.

Hyster supplies a complete product range, including Warehouse trucks, IC and Electric Counterbalanced trucks, Container Handlers and Reach Stackers.

Hyster is committed to being much more than a lift truck supplier. Our aim is to offer a complete partnership capable of responding to the full spectrum of materials handling issues:

Whether you need professional consultancy on your fleet management, fully qualified service support, or reliable parts supply, you can depend on Hyster. Our network of highly trained dealers provides expert, responsive local support.

They can offer cost-effective finance packages and introduce effectively managed maintenance programmes to ensure that you get the best possible value. Our business is dealing with your materials handling needs so you can focus on the success of your business today and in the future.

Hyster Europe, Flagship House, Reading Road North, Fleet, Hants GU51 4WD, England.

Tel: +44 (0) 1252 810261 Fax: +44 (0) 1252 770702

Email: infoeurope@hyster.com Website: www.hyster.com/europe

A division of NACCO Materials Handling Limited.

Hyster®, HYSTER®, Vista® and Monotrol® are registered trademarks of Hyster Company in the United States and in certain other countries.

⊞ ™, Fortens™, Pacesetter VSM™, DuraMatch™, DuraMatchPlus™, TouchPoint™, TouchControl™, EZXchange & HSM™ are trademarks of Hyster Company in the United States and in certain other countries.